
Parallel ProgrammingParallel Programming
00240024

Week 05Week 05

Thomas GrossThomas Gross

Spring Semester 2009Spring Semester 2009
Mar 19, 2009Mar 19, 2009

Outline

�Discussion of Solution(s) to Mergesort

� Performance measurement

�Presentation of Assignment 6

Measurments
long [] best_times = new long[4]; long start, stop;

System.out.print("# elements \t 1 thread ");

for(int i=2; i<=64; i<<=1) System.out.print("\t"+i+" threads ");

System.out.println();

for (int noi=0; noi<2; noi++) {

if(noi==0){ no_elements = 100000; } else{ no_elements = 10000000; }
System.out.print(no_elements+"\t");

for(int no_threads = 1; no_threads<=64; no_threads <<= 1){

for(int i=0; i<4; i++) best_times[i] = Long.MAX_VALUE;

int i=0;

public static final int K = 10;
public static final int EPS = 5; // %
public static final int HUNDRED_DIV_EPS = 100/EPS;

int i=0;

do{
int_to_sort = createRandIntArray(no_elements);

MTMergeSort m = new MTMergeSort(int_to_sort, no_threads);

start = System.currentTimeMillis(); // start timing

m.sort();

stop = System.currentTimeMillis(); // stop timing

best_times[3] = stop - start;

Arrays.sort(best_times);

}while(best_times[2] - best_times[0] >

best_times[2] / HUNDRED_DIV_EPS || ++i < K);

long average = (best_times[0] + best_times[1] + best_times[2]) / 3;

System.out.print(" \t\t"+average);

}

System.out.println();

}

Notes

Extra keys for Java VM: -Xms1024M -Xmx1024M

Constants in Java:

public static final int K = 10;

Results

Threads 1 2 4 8 16 32 64

100 000 13 7 7 7 8 10 12

Threads 1 2 4 8 16 32 64

100 000 70 70 60 70 70 80 80

10 000 000 9947 10728 10241 10128 10124 - -

Intel Core2 Duo CPU E8500 @ 3.16GHz / 4 GB / Ubuntu 8.10 x64

Intel Pentium M @ 1 GHz / 512 MB / XP

Threads 1 2 4 8 16 32 64

100 000 21 11 7 7 8 9 12

10 000 000 2883 1530 958 946 941 943 950

Intel Core2 Quad CPU Q9400 @ 2.66GHz / 4 Gb / 64 bit Vista

Threads 1 2 4 8 16 32 64

100 000 15 0 0 0 0 0 0

10 000 000 3276 1718 989 656 650 650 656

Intel Xeon 8 Core E5345 @2.33 / 2.47 Gb visible due to 32 bit XP

100 000 13 7 7 7 8 10 12

10 000 000 1951 1034 1029 1040 1050 1036 1054

Compare

threads

More threads
Intel Core2 Quad CPU Q9400 @ 2.66GHz / 4 Gb / 64 bit Vista

threads

Classroom Exercise

Class room exercise

Consider this program (fragment) [PingPong] for thread
A (myid == 0) and thread B (myid == 1)

// thread A

public void run() {

while (true) {

A1: non_critical section

A2: while (!(signal.turn == 0)){}

A3: critical_section

A4: signal.turn = 1;

}

}

Class room exercise, continued

// thread B

public void run() {

while (true) {

B1: non_critical section

B2: while (!(signal.turn == 1)){}

B3: critical_section

B4: signal.turn = 0;

}

}

Your task (now!)

Show that these threads will never be both in their
critical section at the same time.

You should prove this property in a manner that’s
similar to the proof given in class.

Some thoughts on how to proceed

We introduced already labels for statements and
produced two distinct versions for thread A and
thread B.

Now you should formulate the invariant.

Invariant(s)

(i) at(A3) -> turn == 0

(ii) at(B3) -> turn== 1

(iii) not [at(A3) AND at(B3)]

Proof strategy

Proof by induction on the execution sequence.

Base case: does (i) hold at the start of the execution of
the program (threads at A1 and B1)

Induction step: Assume that (i) holds. Will execution of
an additional step invalidate (i)?

Proof (i)

at(A1): condition (i) is false => do not care about signal

at(A2): condition (i) is false => do not care about signal

at(A3): condition (i) is true => turn == 0, follows from the fact that
turn was 0 at(A2) AND the transition from A2->A3 did not
change value of turn

at(A4): condition (i) is false ==> do not care about turnat(A4): condition (i) is false ==> do not care about turn

Now, we consider:

at(B1) : no change to turn

at(B2) : no change to turn

at(B3) : no change to turn

at(B4) : changes turn to 0

=> Invariant 1 is true

Proof (ii)

Same way (please do it if you had trouble with proof of
i)

Proof (iii)

Induction start trivial.

Proof of induction step by contradiction.

Assume thread A entered CS (A3) at time t1

Assume thread B entered CS (B3) at time t2, where t2 = t1 + delta

--> CONTRADICTION: since we are in A3 signal MUST be 0 (cannot
be 0 and 1 at the same time)

Assume thread B entered CS (B3) at time t1

Assume thread A entered CS (A3) at time t2, where t2 = t1 + delta

--> CONTRADICTION: since we are in B3 signal MUST be 1 (cannot be 0
and 1 at the same time)

Next exercise…

Show that these threads maintain the mutual exclusion
property, i.e. these threads will never be both in their
critical section at the same time.

public void run() {

while (true) {

mysignal.request();mysignal.request();

while (true) {

if (othersignal.read() == 1) break;

mysignal.free();

mysignal.request();

}

// critical section

mysignal.free();

} }

Any Questions?Any Questions?

